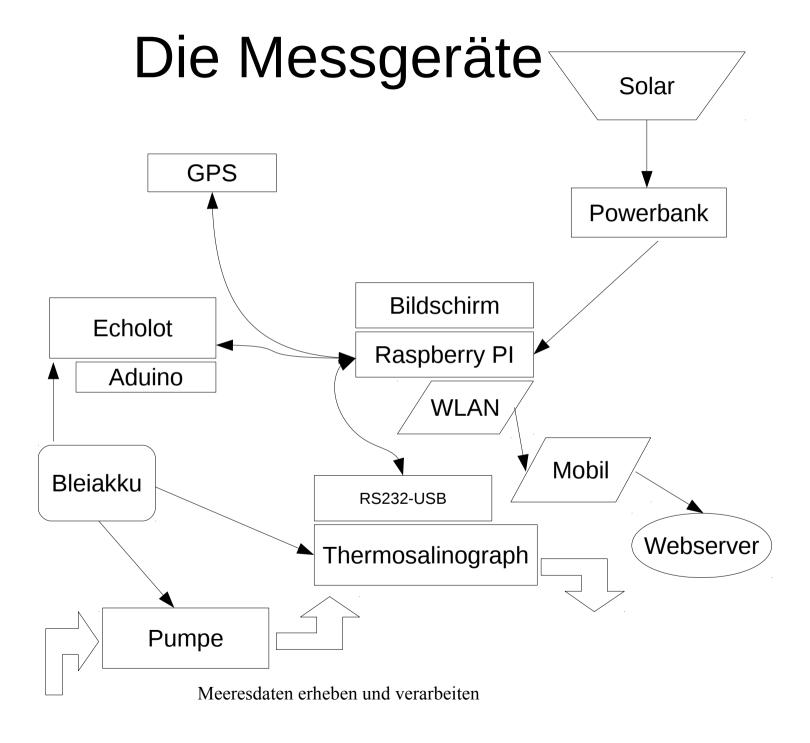
Ozeanwerkstatt


2016

Frank Bartels Florian Steinel

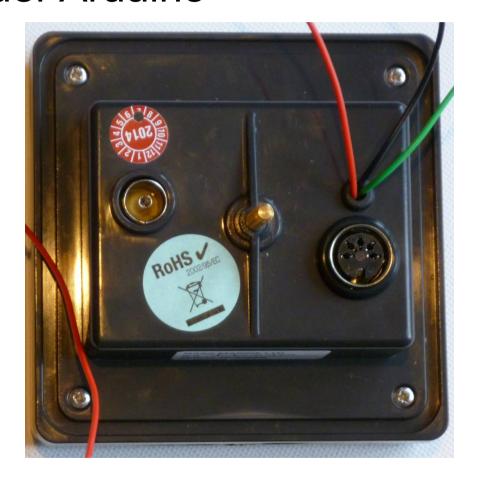
Toppoint.de

Die Messgeräte

- Übersicht
- GPS
- Echolot
- Thermosalinograph (Leihgabe)

Die Messgeräte - GPS

• GPS


Die Messgeräte - Echolot

Echolot

Die Messgeräte – Echolot

Echolot und der Arduino

Meeresdaten erheben und verarbeiten

Die Messgeräte – Thermosalinograph

- RS232 zu USB wandler
- Pumpe mit 12V an bleiakkumulator
- Leitfähigkeit [mS/cm] $\left[\frac{1}{\Omega*m}\right]$
- Temperatur [°C]
- Salinität [PSU]
- Schallgeschwindigkeit im Wasser [m/sec]

Diese Werte werden von der Induktiven Leitfähigkeit des Wassers abgeleitet.

Die Messgeräte – Monitor

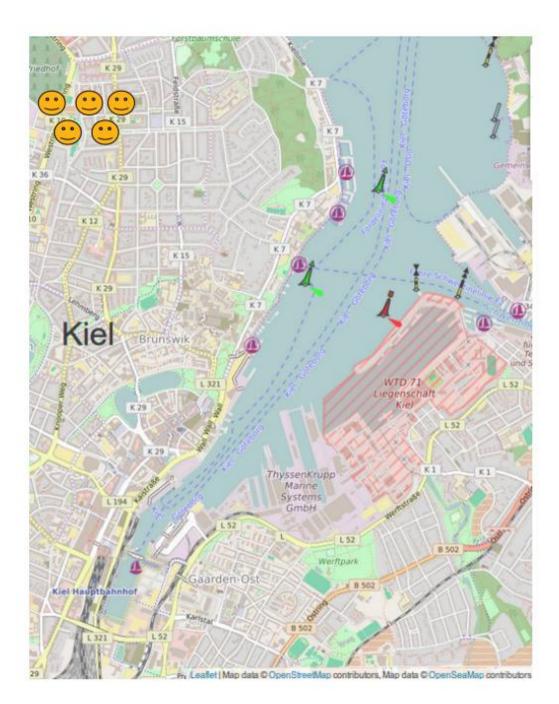
- Raspberry PI
- 7" Display inkl. Gehäuse
- WLAN Stick
- Portabler Mobilfunk Hotspotstick

Die Messgeräte – Monitor Solar **GPS** Powerbank Bildschirm **Echolot** Raspberry PI Aduino WLAN Mobil Bleiakku RS232-USB Webserver Thermosalinograph Pumpe

Meeresdaten erheben und verarbeiten

Die Messgeräte – Stromversorgung

- Powerbank (5V)
 Untestützung per Solarzelle
- Bleiakkumulator (12V)
 (9V für Pumpe von Step-Down Wandler)


Die Messgeräte – Messteuerung

- Anzeige und aufzeichnung auf dem Boot mit Raspberry PI
- Live Datenübertragung auf den Server
 - Die Software socat lauschte und zeichnete die Übermittelten Daten auf
 - Dadurch währe eine Livedarstellung möglich
- GPS Anzeige und Aufzeichnung mit der Software FoxtrottGPS
- Manuelle Kontrolle aller Messdaten
- Manuelle Übertragung an den Server
 - Eine weitere manuelle Kontrolle aller Messdaten

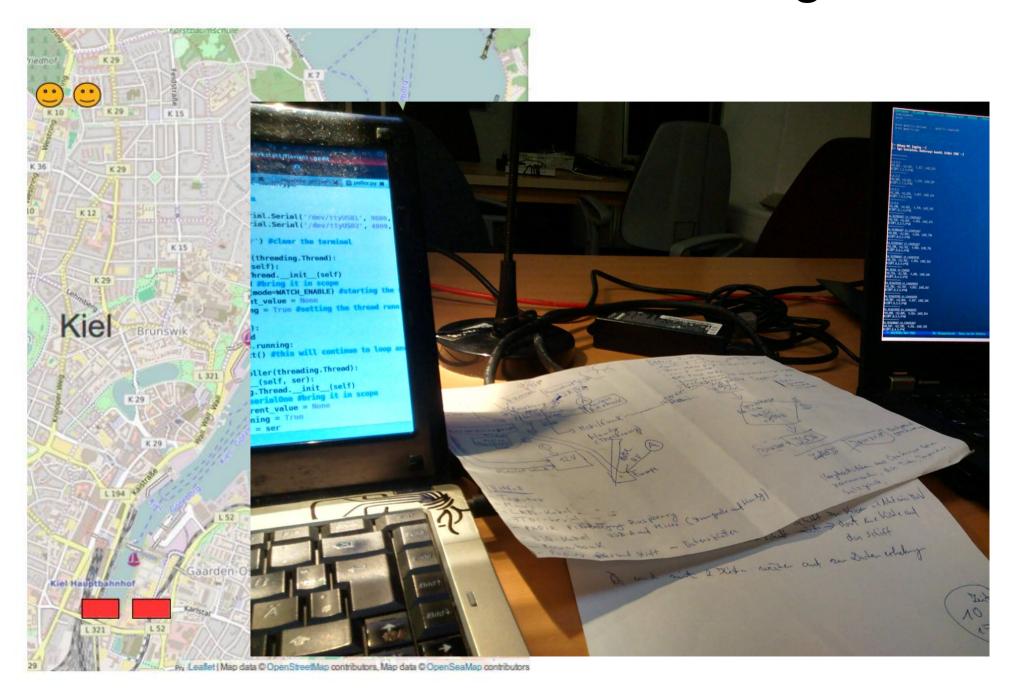
Die Messgeräte - Anekdoten

 Die USB-Stecker von GPS, Echolot und Thermosaloinograph musten in einer vorbestimmenten Reihenfolge eingesteckt werden.

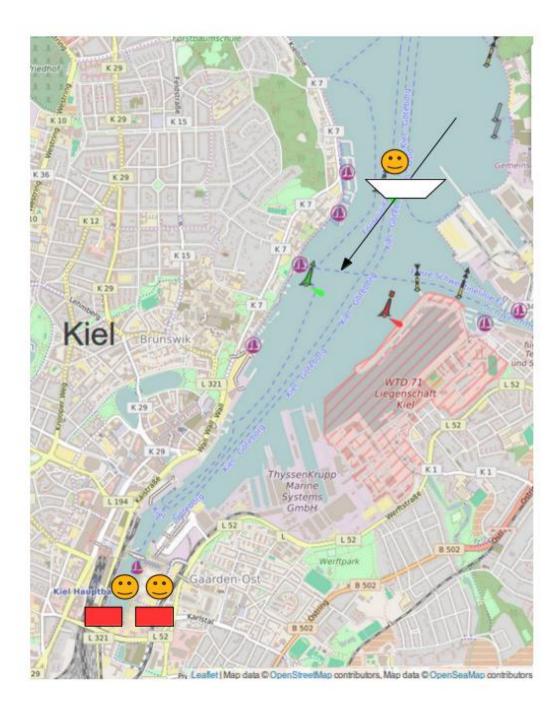
Der Ablauf & Bilder - Bauen

erarbeiten

Der Ablauf & Bilder + Vorstellung

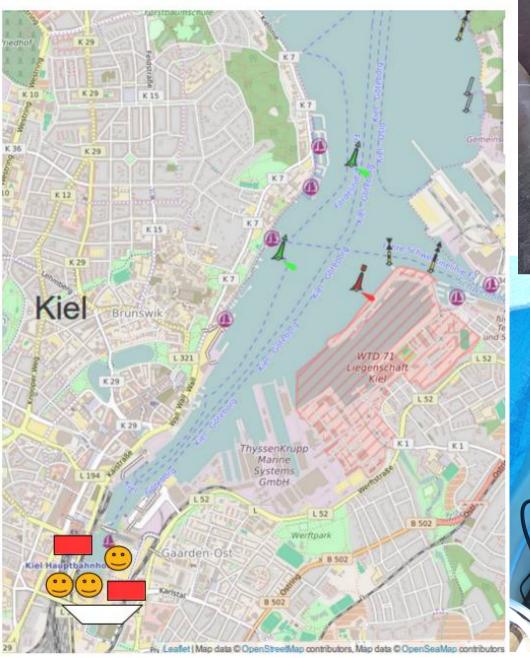


Der Ablauf & Bilder - Hintransportiert



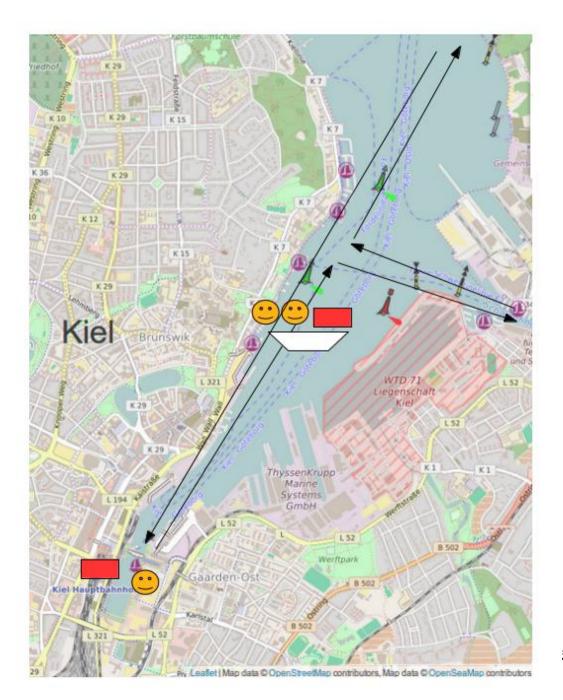
erarbeiten

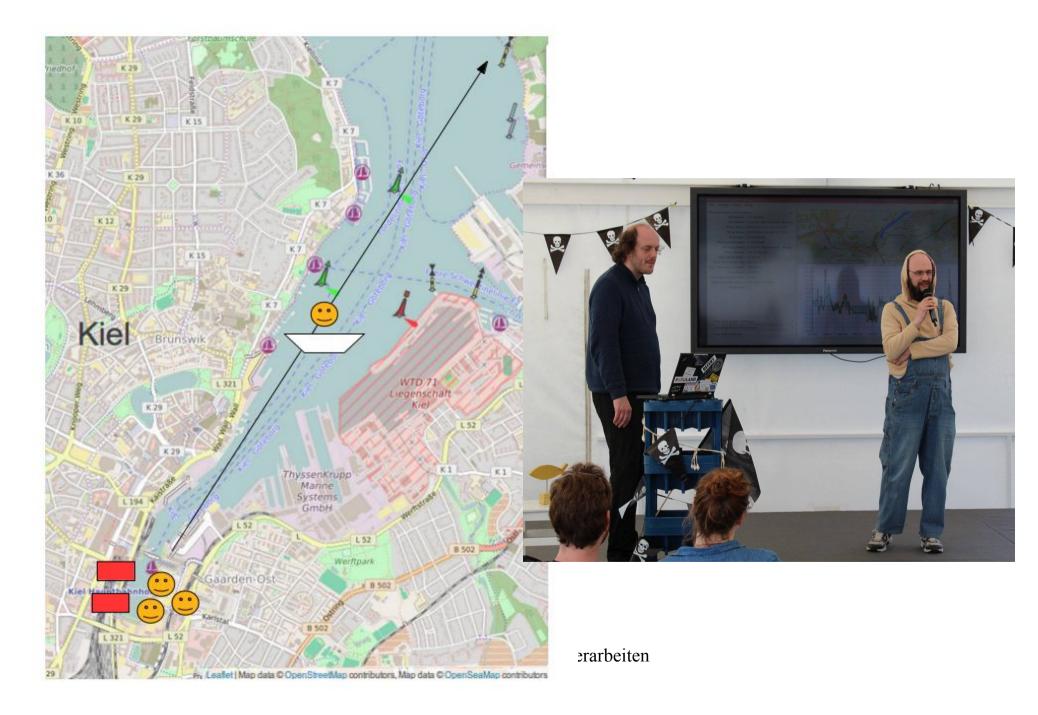
Der Ablauf & Bilder – Prog.

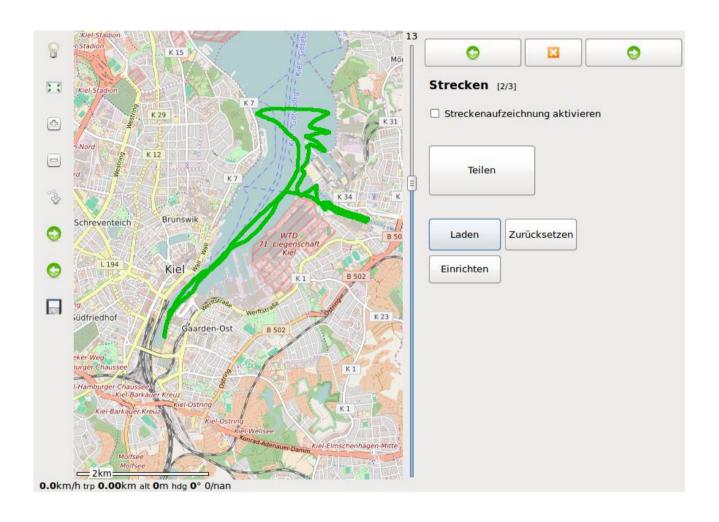


Der Ablauf & Bilder – Mark reist an

erarbeiten


Der Ablauf & Bilder – Aufbau Boot


Der Ablauf & Bilder – Meßfahrt



erarbeiten

Der Ablauf & Bilder – Schlußverans.

Dnerhebung - FoxtrottGPS

Datenerhebung - GPS

- GPS Daten im Format NMEA
- NMEA 0183 kein offener Standard siehe unter zu http://nmea.org (http://www.nmea.org/content/nmea_standards/nme
)
- Freie Interpreter der NMEA/GPS Informationen mit gpsd und nmea.sf.net

 Script hat Kordinaten und Messdaten in die kombinierte Logdatei geschrieben geschrieben und live die Daten an den Server geschickt

Ausgabe GPS NMEA

(Beispiel aus Wikipedia)

```
$GPGGA,092750.000,5321.6802,N,00630.3372,W,1,8,1.03,61.7,M,55.2,M,,*76 $GPGSA,A,3,10,07,05,02,29,04,08,13,,,,1.72,1.03,1.38*0A $GPGSV,3,1,11,10,63,137,17,07,61,098,15,05,59,290,20,08,54,157,30*70 $GPGSV,3,2,11,02,39,223,19,13,28,070,17,26,23,252,,04,14,186,14*79 $GPGSV,3,3,11,29,09,301,24,16,09,020,,36,,,*76 $GPRMC,092750.000,A,5321.6802,N,00630.3372,W,0.02,31.66,280511,,,A*43 $GPGGA,092751.000,5321.6802,N,00630.3371,W,1,8,1.03,61.7,M,55.3,M,,*75 $GPGSA,A,3,10,07,05,02,29,04,08,13,,,,1.72,1.03,1.38*0A $GPGSV,3,1,11,10,63,137,17,07,61,098,15,05,59,290,20,08,54,157,30*70 $GPGSV,3,2,11,02,39,223,16,13,28,070,17,26,23,252,,04,14,186,15*77 $GPGSV,3,3,11,29,09,301,24,16,09,020,,36,,,*76 $GPRMC,092751.000,A,5321.6802,N,00630.3371,W,0.06,31.66,280511,,,A*45
```

Der Daemon gpsd interpretiert diese Daten und liefert uns die gewünschten Positiondaten zu jedem aktuellen Zeitpunkt

Ausgabe Echolot NMEA:

\$IIDPT,11.3,0.0*73	\$IIDPT,19.2,0.0*7A
\$IIDPT,11.5,0.0*75	\$IIDPT,1.2,0.0*43
\$IIDPT,10.9,0.0*78	\$bad data \$bad data
\$IIDPT,11.0,0.0*70	\$IIDPT,14.9,0.0*7C
\$IIDPT,11.4,0.0*74	\$IIDPT,14.8,0.0*7D
\$IIDPT,11.3,0.0*73	\$IIDPT,14.5,0.0*70
\$IIDPT,11.6,0.0*76	\$IIDPT,14.5,0.0*70
•	\$IIDPT,14.3,0.0*76
\$bad data	\$IIDPT,13.8,0.0*7A
\$bad data	\$IIDPT,13.4,0.0*76
\$IIDPT,1.1,0.0*40	\$IIDPT,13.2,0.0*70
	\$IIDPT,13.3,0.0*71

Meeresdaten erheben und verarbeiten

\$IIDPT,10.1,0.0*70 \$IIDPT,10.1,0.0*70 \$IIDPT,10.0,0.0*71 \$IIDPT,10.4,0.0*75 \$IIDPT,10.6,0.0*77 \$IIDPT,9.6,0.0*4F

Ausgabe Thermosaloinograph:

- Leitfähigkeit [mS/cm] [
- Temperatur [°C]
- Salinität [PSU]
- Schallgeschwindigkeit im Wasser [m/sec]

```
+00.527, +12.937, 0.327, 1492.820
+00.445, +12.811, 0.275, 1492.287
+01.248, +12.676, 0.807, 1492.424
+01.096, +12.651, 0.705, 1492.205
+00.728, +12.802, 0.459, 1492.476
+00.995, +12.831, 0.634, 1492.798
+01.296, +12.761, 0.838, 1492.781
+00.720, +12.762, 0.454, 1492,318
+00.724, +12.785, 0.456, 1492.406
+01.260, +12.787, 0.813, 1492.847
+00.557, +12.804, 0.347, 1492.348
+00.499, +12.805, 0.310, 1492.304
+00.547, +12.795, 0.341, 1492.305
+00.735, +12.812, 0.463, 1492.518
+00.791, +12.898, 0.498, 1492.885
+01.026, +12.919, 0.653, 1493.150
+01.298, +12.897, 0.836, 1493.289
+01.021, +12.861, 0.651, 1492.930
+01.385, +12.834, 0.896, 1493.125
+00.812, +12.824, 0.514, 1492.625
+01.048, +12.826, 0.670, 1492.822
+01.019, +12.793, 0.651, 1492.675
+00.973, +12.777, 0.620, 1492.577
+01.031, +12.782, 0.659, 1492.644
+01.342, +12.784, 0.868, 1492.904
+01.368, +12.824, 0.885, 1493.074
+00.917, +12.803, 0.583, 1492.628
+00.936, +12.763, 0.596, 1492.496
+01.209, +12.756, 0.779, 1492.691
+00.716, +12.772, 0.451, 1492.354
```

Gelerntes

- Keine Tauchpumpe sondern eine Schlauchpumpe nutzen
- Fotos machen von den Messgeräten, Messaufbau und der Messfahrt.
- Kontrolle der Daten Messteuerung verbessern zur Erkennung der Lücken in der Datenerhebung sodass diese geschlossen werden können.

Gelerntes

- Die Software muss mit Eingabefehlern von den Messgeräten zurechtkommen
 - Messausfall (Daten veraltet)
 - fehlerhafte Datensätze ignorieren
 - Fehlermeldungen interpretieren

Datenverarbeitung

 3. Pythonscript welches diese Kombilogdatei nach GeoJson wandelt

```
GeoJSON
https://de.wikipedia.org/wiki/GeoJSON
Feature:
var feature0 =
        "type": "Feature",
        "geometry":
            "coordinates": [ 10.175215, 54.329785 ],
            "type": "Point"
        "properties":
            "conduct": 11.529,
            "depth": 7.5,
            "salinity": 8.623,
            "sonicspeed": 1501.131,
            "temp": 12.476
```

```
Leaflet
http://geojson.org/geojson-spec.html
GeoJSON-Daten anzeigen...
 var messdaten sel = [ feature0, feature1 ];
 L.geoJson(messdaten sel,
  { pointToLayer: function (feature, lating)
   { return L.marker(latlng,
     { 'icon': L.divIcon(
        { className: 'circle-div-icon',
          'html': feature.properties.depth!==undefined
                 ?'   '
                   +feature.properties.depth+'m'
                  : ' ' } )
     });
 }).addTo(map);
```

Meeresdaten erheben und verarbeiten

Davor muß man noch Dinge einbinden und das map-Objekt anlegen...

```
<link rel="stylesheet"
          type="text/css"
          href="leaflet/leaflet.css" />
<script type="text/javascript"
          src="leaflet/leaflet.js"/>
<script type="text/javascript">
map = new L.Map('map');
map.setView(new L.LatLng(54.3306,10.154),14);
```

Und man kann noch diverse Dinge anlegen und in Layern organsieren...

```
// Marker, anklickbar -> HTML
var marker tp = L.marker([54.34165, 10.12510]).addTo(map);
marker tp.bindPopup("<center><img src='....png' ...><br>
                     Toppoint</center>").openPopup();
var markers = new L.layerGroup(
  [marker tp, marker probe, marker msw]).addTo(map);
L.control.layers
( { 'Ohne Hintergrund':L.polyline([]),
    'Kartenhintergrund':map back
  { 'Marker':markers,
    'Seezeichen':oseam,
    'isolines test (Zufallsdaten)':isolines test
   'collapsed':false
).addTo(map);
```

Geo Informations System – GIS

Demo mit QGIS

Dank an

- Toppoint
- und die mich Unterstützt haben bei der Erstellung des Messaufbaus
- Umsetzung des
- Zur verfügungsstellung des Thermosalinographen
- Das Boot mit dem wir die Messfahrten

Quelle der Medien

- Thermosalinograph
 - http://www.aoml.noaa.gov/phod/tsg/about.php
 - http://www.aoml.noaa.gov/phod/tsg/contact.php
 - http://www.aoml.noaa.gov/outreach/

•

- https://tidesandcurrents.noaa.gov/ports.html
- https://data.noaa.gov/dataset/archive-ofgeosample-information-from-the-geomar-helmholtzcentre-for-ocean-research-kiel-core-